博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
hadoop实例sort
阅读量:6280 次
发布时间:2019-06-22

本文共 19523 字,大约阅读时间需要 65 分钟。

参考文献:http://www.hadooper.cn/dct/page/65777

1排序实例

排序实例仅仅用 map/reduce框架来把输入目录排序放到输出目录。
输入和输出必须是顺序文件,键和值是BytesWritable.
mapper是预先定义的IdentityMapper,reducer 是预先定义的 IdentityReducer, 两个都是把输入直接的输出。
要运行这个例 子:bin/hadoop jar hadoop-*-examples.jar sort [-m <#maps>] [-r <#reduces>] <in-dir> <out-dir>

2运行排序基准测试

为了使得排序例子作为一个 基准测试,用 RandomWriter产 生10GB/node 的数据。然后用排序实例来进行排序。这个提供了一个可扩展性依赖于集群的大小的排序基准。默认情况下,排序实例用1.0*capacity作为 reduces的数量,依赖于你的集群的大小你可能会在1.75*capacity的情况下得到更好的结果。
To use the sort example as a benchmark, generate 10GB/node of random data using RandomWriter. Then sort the data using the sort example. This provides a sort benchmark that scales depending on the size of the cluster. By default, the sort example uses 1.0 * capacity for the number of reduces and depending on your cluster you may see better results at 1.75 * capacity.
命令是:

% bin/hadoop jar hadoop-*-examples.jar randomwriter rand % bin/hadoop jar hadoop-*-examples.jar sort rand rand-sort

第一个命令会在rand 目录的生成没有排序的数据。第二个命令会读数据,排序,然后写入rand-sort 目录

排序支持一般的选项:参见DevelopmentCommandLineOptions

3具体实验

3.1代码实例Sort.java

/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.hadoop.examples; import java.io.IOException; import java.net.URI; import java.util.*; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.filecache.DistributedCache; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.BytesWritable; import org.apache.hadoop.io.Writable; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.mapred.*; import org.apache.hadoop.mapred.lib.IdentityMapper; import org.apache.hadoop.mapred.lib.IdentityReducer; import org.apache.hadoop.mapred.lib.InputSampler; import org.apache.hadoop.mapred.lib.TotalOrderPartitioner; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; /** * This is the trivial map/reduce program that does absolutely nothing * other than use the framework to fragment and sort the input values. * * To run: bin/hadoop jar build/hadoop-examples.jar sort * [-m <i>maps</i>] [-r <i>reduces</i>] * [-inFormat <i>input format class</i>] * [-outFormat <i>output format class</i>] * [-outKey <i>output key class</i>] * [-outValue <i>output value class</i>] * [-totalOrder <i>pcnt</i> <i>num samples</i> <i>max splits</i>] * <i>in-dir</i> <i>out-dir</i> */ public class Sort<K,V> extends Configured implements Tool { private RunningJob jobResult = null; static int printUsage() { System.out.println("sort [-m <maps>] [-r <reduces>] " + "[-inFormat <input format class>] " + "[-outFormat <output format class>] " + "[-outKey <output key class>] " + "[-outValue <output value class>] " + "[-totalOrder <pcnt> <num samples> <max splits>] " + "<input> <output>"); ToolRunner.printGenericCommandUsage(System.out); return -1; } /** * The main driver for sort program. * Invoke this method to submit the map/reduce job. * @throws IOException When there is communication problems with the * job tracker. */ public int run(String[] args) throws Exception { JobConf jobConf = new JobConf(getConf(), Sort.class); jobConf.setJobName("sorter"); jobConf.setMapperClass(IdentityMapper.class); jobConf.setReducerClass(IdentityReducer.class); JobClient client = new JobClient(jobConf); ClusterStatus cluster = client.getClusterStatus(); int num_reduces = (int) (cluster.getMaxReduceTasks() * 0.9); String sort_reduces = jobConf.get("test.sort.reduces_per_host"); if (sort_reduces != null) { num_reduces = cluster.getTaskTrackers() * Integer.parseInt(sort_reduces); } Class<? extends InputFormat> inputFormatClass = SequenceFileInputFormat.class; Class<? extends OutputFormat> outputFormatClass = SequenceFileOutputFormat.class; Class<? extends WritableComparable> outputKeyClass = BytesWritable.class; Class<? extends Writable> outputValueClass = BytesWritable.class; List<String> otherArgs = new ArrayList<String>(); InputSampler.Sampler<K,V> sampler = null; for(int i=0; i < args.length; ++i) { try { if ("-m".equals(args[i])) { jobConf.setNumMapTasks(Integer.parseInt(args[++i])); } else if ("-r".equals(args[i])) { num_reduces = Integer.parseInt(args[++i]); } else if ("-inFormat".equals(args[i])) { inputFormatClass = Class.forName(args[++i]).asSubclass(InputFormat.class); } else if ("-outFormat".equals(args[i])) { outputFormatClass = Class.forName(args[++i]).asSubclass(OutputFormat.class); } else if ("-outKey".equals(args[i])) { outputKeyClass = Class.forName(args[++i]).asSubclass(WritableComparable.class); } else if ("-outValue".equals(args[i])) { outputValueClass = Class.forName(args[++i]).asSubclass(Writable.class); } else if ("-totalOrder".equals(args[i])) { double pcnt = Double.parseDouble(args[++i]); int numSamples = Integer.parseInt(args[++i]); int maxSplits = Integer.parseInt(args[++i]); if (0 >= maxSplits) maxSplits = Integer.MAX_VALUE; sampler = new InputSampler.RandomSampler<K,V>(pcnt, numSamples, maxSplits); } else { otherArgs.add(args[i]); } } catch (NumberFormatException except) { System.out.println("ERROR: Integer expected instead of " + args[i]); return printUsage(); } catch (ArrayIndexOutOfBoundsException except) { System.out.println("ERROR: Required parameter missing from " + args[i-1]); return printUsage(); // exits } } // Set user-supplied (possibly default) job configs jobConf.setNumReduceTasks(num_reduces); jobConf.setInputFormat(inputFormatClass); jobConf.setOutputFormat(outputFormatClass); jobConf.setOutputKeyClass(outputKeyClass); jobConf.setOutputValueClass(outputValueClass); // Make sure there are exactly 2 parameters left. if (otherArgs.size() != 2) { System.out.println("ERROR: Wrong number of parameters: " + otherArgs.size() + " instead of 2."); return printUsage(); } FileInputFormat.setInputPaths(jobConf, otherArgs.get(0)); FileOutputFormat.setOutputPath(jobConf, new Path(otherArgs.get(1))); if (sampler != null) { System.out.println("Sampling input to effect total-order sort..."); jobConf.setPartitionerClass(TotalOrderPartitioner.class); Path inputDir = FileInputFormat.getInputPaths(jobConf)[0]; inputDir = inputDir.makeQualified(inputDir.getFileSystem(jobConf)); Path partitionFile = new Path(inputDir, "_sortPartitioning"); TotalOrderPartitioner.setPartitionFile(jobConf, partitionFile); InputSampler.<K,V>writePartitionFile(jobConf, sampler); URI partitionUri = new URI(partitionFile.toString() + "#" + "_sortPartitioning"); DistributedCache.addCacheFile(partitionUri, jobConf); DistributedCache.createSymlink(jobConf); } System.out.println("Running on " + cluster.getTaskTrackers() + " nodes to sort from " + FileInputFormat.getInputPaths(jobConf)[0] + " into " + FileOutputFormat.getOutputPath(jobConf) + " with " + num_reduces + " reduces."); Date startTime = new Date(); System.out.println("Job started: " + startTime); jobResult = JobClient.runJob(jobConf); Date end_time = new Date(); System.out.println("Job ended: " + end_time); System.out.println("The job took " + (end_time.getTime() - startTime.getTime()) /1000 + " seconds."); return 0; } //input attr:/home/hadoop/rand/part-00000 /home/hadoop/rand-sort public static void main(String[] args) throws Exception { int res = ToolRunner.run(new Configuration(), new Sort(), args); System.exit(res); } /** * Get the last job that was run using this instance. * @return the results of the last job that was run */ public RunningJob getResult() { return jobResult; } }

3.2在eclipse中设置参数:

/home/hadoop/rand/part-00000 /home/hadoop/rand-sort

其中/home/hadoop/rand/part-00000 表示输入路径,/home/hadoop/rand-sort表示输出路径

3.3数据来源

我们这里输入参数中的“/home/hadoop/rand/part-00000”是通过 这个实例得到的。为了节省时间, 中得到了两个文件,我们这里指使用了一个文件part-00000。如果要对两个文件都进行排序操作,那么输入路径只需要是目录即可。

4总结

本程序目前我测试只能在单机上执行,不能在集群上运行。即指可以run as ->java application,而不能run on hadoop,具体原因还没有找到,如果发现后续会更新本博客。

PS:2011-10-18

运行环境

1. run as java application

console中会输出信息

Running on 1 nodes to sort from hdfs://master:9000/home/hadoop/rand/part-00000 into hdfs://master:9000/home/hadoop/rand-sort with 1 reduces.

2.一个master和一个slave,run on hadoop

console输出信息

Running on 1 nodes to sort from hdfs://master:9000/home/hadoop/rand/part-00000 into hdfs://master:9000/home/hadoop/rand-sort with 1 reduces.跟第一中情况一样。

3.一台主机即做master又做slave,另外一台单独做slave

console输出信息

11/10/18 09:24:35 WARN conf.Configuration: DEPRECATED: hadoop-site.xml found in the classpath. Usage of hadoop-site.xml is deprecated. Instead use core-site.xml, mapred-site.xml and hdfs-site.xml to override properties of core-default.xml, mapred-default.xml and hdfs-default.xml respectively Running on 2 nodes to sort from hdfs://master:9000/home/hadoop/rand/part-00000 into hdfs://master:9000/home/hadoop/rand-sort with 3 reduces. Job started: Tue Oct 18 09:24:35 CST 2011 11/10/18 09:24:35 INFO mapred.FileInputFormat: Total input paths to process : 1 11/10/18 09:24:36 INFO mapred.JobClient: Running job: job_201110180923_0001 11/10/18 09:24:37 INFO mapred.JobClient: map 0% reduce 0% 11/10/18 09:24:50 INFO mapred.JobClient: map 6% reduce 0% 11/10/18 09:24:51 INFO mapred.JobClient: map 18% reduce 0% 11/10/18 09:24:53 INFO mapred.JobClient: map 25% reduce 0% 11/10/18 09:24:56 INFO mapred.JobClient: map 31% reduce 0% 11/10/18 09:25:01 INFO mapred.JobClient: map 43% reduce 0% 11/10/18 09:25:02 INFO mapred.JobClient: map 49% reduce 0% 11/10/18 09:25:04 INFO mapred.JobClient: map 50% reduce 2% 11/10/18 09:25:08 INFO mapred.JobClient: map 56% reduce 4% 11/10/18 09:25:09 INFO mapred.JobClient: map 62% reduce 6% 11/10/18 09:25:11 INFO mapred.JobClient: map 68% reduce 8% 11/10/18 09:25:12 INFO mapred.JobClient: map 75% reduce 8% 11/10/18 09:25:14 INFO mapred.JobClient: map 81% reduce 9% 11/10/18 09:25:20 INFO mapred.JobClient: map 87% reduce 9% 11/10/18 09:25:23 INFO mapred.JobClient: map 93% reduce 12% 11/10/18 09:25:26 INFO mapred.JobClient: map 93% reduce 13% 11/10/18 09:25:27 INFO mapred.JobClient: map 100% reduce 14% 11/10/18 09:25:29 INFO mapred.JobClient: map 100% reduce 15% 11/10/18 09:25:35 INFO mapred.JobClient: map 100% reduce 16% 11/10/18 09:25:36 INFO mapred.JobClient: map 100% reduce 17% 11/10/18 09:27:49 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000000_0, Status : FAILED Too many fetch-failures 11/10/18 09:27:49 WARN mapred.JobClient: Error reading task outputxuwei-laptop 11/10/18 09:27:49 WARN mapred.JobClient: Error reading task outputxuwei-laptop 11/10/18 09:28:05 INFO mapred.JobClient: map 100% reduce 18% 11/10/18 09:32:51 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000003_0, Status : FAILED Too many fetch-failures 11/10/18 09:32:55 INFO mapred.JobClient: map 93% reduce 18% 11/10/18 09:32:58 INFO mapred.JobClient: map 100% reduce 18% 11/10/18 09:33:04 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000001_0, Status : FAILED Too many fetch-failures 11/10/18 09:33:04 WARN mapred.JobClient: Error reading task outputxuwei-laptop 11/10/18 09:33:04 WARN mapred.JobClient: Error reading task outputxuwei-laptop 11/10/18 09:33:11 INFO mapred.JobClient: map 100% reduce 19% 11/10/18 09:33:20 INFO mapred.JobClient: map 100% reduce 20% 11/10/18 09:38:19 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000005_0, Status : FAILED Too many fetch-failures 11/10/18 09:38:19 WARN mapred.JobClient: Error reading task outputxuwei-laptop 11/10/18 09:38:19 WARN mapred.JobClient: Error reading task outputxuwei-laptop 11/10/18 09:38:23 INFO mapred.JobClient: map 93% reduce 20% 11/10/18 09:38:26 INFO mapred.JobClient: map 100% reduce 20% 11/10/18 09:38:35 INFO mapred.JobClient: map 100% reduce 21% 11/10/18 09:38:41 INFO mapred.JobClient: map 100% reduce 22% 11/10/18 09:43:10 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000002_0, Status : FAILED Too many fetch-failures 11/10/18 09:43:14 INFO mapred.JobClient: map 93% reduce 22% 11/10/18 09:43:17 INFO mapred.JobClient: map 100% reduce 22% 11/10/18 09:43:35 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000006_0, Status : FAILED Too many fetch-failures 11/10/18 09:43:35 WARN mapred.JobClient: Error reading task outputxuwei-laptop 11/10/18 09:43:35 WARN mapred.JobClient: Error reading task outputxuwei-laptop 11/10/18 09:43:51 INFO mapred.JobClient: map 100% reduce 24% 11/10/18 09:48:50 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000009_0, Status : FAILED Too many fetch-failures 11/10/18 09:48:50 WARN mapred.JobClient: Error reading task outputxuwei-laptop 11/10/18 09:48:50 WARN mapred.JobClient: Error reading task outputxuwei-laptop 11/10/18 09:49:06 INFO mapred.JobClient: map 100% reduce 25% 11/10/18 09:53:21 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000004_0, Status : FAILED Too many fetch-failures 11/10/18 09:53:25 INFO mapred.JobClient: map 93% reduce 25% 11/10/18 09:53:28 INFO mapred.JobClient: map 100% reduce 25% 11/10/18 09:53:37 INFO mapred.JobClient: map 100% reduce 26% 11/10/18 09:54:05 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000011_0, Status : FAILED Too many fetch-failures 11/10/18 09:54:05 WARN mapred.JobClient: Error reading task outputxuwei-laptop 11/10/18 09:54:05 WARN mapred.JobClient: Error reading task outputxuwei-laptop 11/10/18 09:54:21 INFO mapred.JobClient: map 100% reduce 27% 11/10/18 09:59:20 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000015_0, Status : FAILED Too many fetch-failures 11/10/18 09:59:20 WARN mapred.JobClient: Error reading task outputxuwei-laptop 11/10/18 09:59:20 WARN mapred.JobClient: Error reading task outputxuwei-laptop 11/10/18 09:59:36 INFO mapred.JobClient: map 100% reduce 52% 11/10/18 09:59:42 INFO mapred.JobClient: map 100% reduce 53% 11/10/18 09:59:45 INFO mapred.JobClient: map 100% reduce 54% 11/10/18 09:59:48 INFO mapred.JobClient: map 100% reduce 55% 11/10/18 09:59:51 INFO mapred.JobClient: map 100% reduce 56% 11/10/18 09:59:54 INFO mapred.JobClient: map 100% reduce 57% 11/10/18 09:59:57 INFO mapred.JobClient: map 100% reduce 58% 11/10/18 10:00:00 INFO mapred.JobClient: map 100% reduce 60% 11/10/18 10:00:03 INFO mapred.JobClient: map 100% reduce 61% 11/10/18 10:00:06 INFO mapred.JobClient: map 100% reduce 62% 11/10/18 10:00:09 INFO mapred.JobClient: map 100% reduce 63% 11/10/18 10:00:12 INFO mapred.JobClient: map 100% reduce 64% 11/10/18 10:00:15 INFO mapred.JobClient: map 100% reduce 65% 11/10/18 10:00:18 INFO mapred.JobClient: map 100% reduce 66% 11/10/18 10:00:21 INFO mapred.JobClient: map 100% reduce 67% 11/10/18 10:00:24 INFO mapred.JobClient: map 100% reduce 68% 11/10/18 10:00:27 INFO mapred.JobClient: map 100% reduce 69% 11/10/18 10:00:30 INFO mapred.JobClient: map 100% reduce 70% 11/10/18 10:00:33 INFO mapred.JobClient: map 100% reduce 71% 11/10/18 10:00:36 INFO mapred.JobClient: map 100% reduce 72% 11/10/18 10:00:39 INFO mapred.JobClient: map 100% reduce 73% 11/10/18 10:00:52 INFO mapred.JobClient: map 100% reduce 75% 11/10/18 10:03:41 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000007_0, Status : FAILED Too many fetch-failures 11/10/18 10:03:45 INFO mapred.JobClient: map 93% reduce 75% 11/10/18 10:03:48 INFO mapred.JobClient: map 100% reduce 75% 11/10/18 10:08:34 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000003_1, Status : FAILED Too many fetch-failures 11/10/18 10:08:34 WARN mapred.JobClient: Error reading task outputxuwei-laptop 11/10/18 10:08:34 WARN mapred.JobClient: Error reading task outputxuwei-laptop 11/10/18 10:08:50 INFO mapred.JobClient: map 100% reduce 76% 11/10/18 10:13:53 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000008_0, Status : FAILED Too many fetch-failures 11/10/18 10:13:57 INFO mapred.JobClient: map 93% reduce 76% 11/10/18 10:14:00 INFO mapred.JobClient: map 100% reduce 76% 11/10/18 10:18:49 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000002_1, Status : FAILED Too many fetch-failures 11/10/18 10:18:49 WARN mapred.JobClient: Error reading task outputxuwei-laptop 11/10/18 10:18:49 WARN mapred.JobClient: Error reading task outputxuwei-laptop 11/10/18 10:19:05 INFO mapred.JobClient: map 100% reduce 77% 11/10/18 10:24:09 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000010_0, Status : FAILED Too many fetch-failures 11/10/18 10:24:13 INFO mapred.JobClient: map 93% reduce 77% 11/10/18 10:24:16 INFO mapred.JobClient: map 100% reduce 77% 11/10/18 10:29:04 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000004_1, Status : FAILED Too many fetch-failures 11/10/18 10:29:04 WARN mapred.JobClient: Error reading task outputxuwei-laptop 11/10/18 10:29:04 WARN mapred.JobClient: Error reading task outputxuwei-laptop 11/10/18 10:29:20 INFO mapred.JobClient: map 100% reduce 89% 11/10/18 10:29:23 INFO mapred.JobClient: map 100% reduce 91% 11/10/18 10:29:26 INFO mapred.JobClient: map 100% reduce 92% 11/10/18 10:29:29 INFO mapred.JobClient: map 100% reduce 93% 11/10/18 10:29:32 INFO mapred.JobClient: map 100% reduce 94% 11/10/18 10:29:35 INFO mapred.JobClient: map 100% reduce 95% 11/10/18 10:29:38 INFO mapred.JobClient: map 100% reduce 96% 11/10/18 10:29:41 INFO mapred.JobClient: map 100% reduce 97% 11/10/18 10:29:44 INFO mapred.JobClient: map 100% reduce 98% 11/10/18 10:29:50 INFO mapred.JobClient: map 100% reduce 100% 11/10/18 10:29:52 INFO mapred.JobClient: Job complete: job_201110180923_0001 11/10/18 10:29:52 INFO mapred.JobClient: Counters: 18 11/10/18 10:29:52 INFO mapred.JobClient: Job Counters 11/10/18 10:29:52 INFO mapred.JobClient: Launched reduce tasks=4 11/10/18 10:29:52 INFO mapred.JobClient: Launched map tasks=32 11/10/18 10:29:52 INFO mapred.JobClient: Data-local map tasks=32 11/10/18 10:29:52 INFO mapred.JobClient: FileSystemCounters 11/10/18 10:29:52 INFO mapred.JobClient: FILE_BYTES_READ=1075141899 11/10/18 10:29:52 INFO mapred.JobClient: HDFS_BYTES_READ=1077495458 11/10/18 10:29:52 INFO mapred.JobClient: FILE_BYTES_WRITTEN=2150285276 11/10/18 10:29:52 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=1077290017 11/10/18 10:29:52 INFO mapred.JobClient: Map-Reduce Framework 11/10/18 10:29:52 INFO mapred.JobClient: Reduce input groups=102334 11/10/18 10:29:52 INFO mapred.JobClient: Combine output records=0 11/10/18 10:29:52 INFO mapred.JobClient: Map input records=102334 11/10/18 10:29:52 INFO mapred.JobClient: Reduce shuffle bytes=1031027235 11/10/18 10:29:52 INFO mapred.JobClient: Reduce output records=102334 11/10/18 10:29:52 INFO mapred.JobClient: Spilled Records=204668 11/10/18 10:29:52 INFO mapred.JobClient: Map output bytes=1074566657 11/10/18 10:29:52 INFO mapred.JobClient: Map input bytes=1077289249 11/10/18 10:29:52 INFO mapred.JobClient: Combine input records=0 11/10/18 10:29:52 INFO mapred.JobClient: Map output records=102334 11/10/18 10:29:52 INFO mapred.JobClient: Reduce input records=102334 Job ended: Tue Oct 18 10:29:52 CST 2011 The job took 3916 seconds.

转载于:https://www.cnblogs.com/xwdreamer/archive/2011/10/17/2296956.html

你可能感兴趣的文章
浅谈MVC3自定义分页
查看>>
.net中ashx文件有什么用?功能有那些,一般用在什么情况下?
查看>>
select、poll、epoll之间的区别总结[整理]【转】
查看>>
CSS基础知识(上)
查看>>
PHP中常见的面试题2(附答案)
查看>>
26.Azure备份服务器(下)
查看>>
mybatis学习
查看>>
LCD的接口类型详解
查看>>
Spring Boot Unregistering JMX-exposed beans on shutdown
查看>>
poi 导入导出的api说明(大全)
查看>>
Mono for Android 优势与劣势
查看>>
将图片转成base64字符串并在JSP页面显示的Java代码
查看>>
js 面试题
查看>>
sqoop数据迁移(基于Hadoop和关系数据库服务器之间传送数据)
查看>>
腾讯云下安装 nodejs + 实现 Nginx 反向代理
查看>>
Javascript 中的 Array 操作
查看>>
java中包容易出现的错误及权限问题
查看>>
AngularJS之初级Route【一】(六)
查看>>
服务器硬件问题整理的一点总结
查看>>
SAP S/4HANA Cloud: Revolutionizing the Next Generation of Cloud ERP
查看>>